21,589 research outputs found

    Nodeless energy gaps of single-crystalline Ba0.68K0.32Fe2As2 as seen via 75As NMR

    Full text link
    We report 75^{75}As nuclear magnetic resonance studies on a very clean hole-doped single-crystal Ba0.68_{0.68}K0.32_{0.32}Fe2_{2}As2_{2} (Tc=38.5T_{\rm {c}}=38.5 K). The spin-lattice relaxation rate 1/T11/T_{1} shows an exponential decrease below T≃0.45TcT \simeq 0.45 T_{\rm c} down to T≃0.11TcT \simeq 0.11 T_{\rm c}, which indicates a fully opened energy gap. From the ratio (T1)c/(T1)a(T_{1})_{c} / (T_{1})_{a}, where aa and cc denote the crystal directions, we find that the antiferromagnetic spin fluctuation is anisotropic in the spin space above TcT_{\rm c}. The anisotropy decreases below TcT_{\rm c} and disappears at T→0T \rightarrow 0. We argue that the anisotropy stems from spin-orbit coupling whose effect vanishes when spin-singlet electron pairs form with a nodeless gap.Comment: 10 pages, 6 figure

    deTector: a Topology-aware Monitoring System for Data Center Networks

    Get PDF
    Troubleshooting network performance issues is a challenging task especially in large-scale data center networks. This paper presents deTector, a network monitoring system that is able to detect and localize network failures (manifested mainly by packet losses) accurately in near real time while minimizing the monitoring overhead. deTector achieves this goal by tightly coupling detection and localization and carefully selecting probe paths so that packet losses can be localized only according to end-to-end observations without the help of additional tools (e.g., tracert). In particular, we quantify the desirable properties of the matrix of probe paths, i.e., coverage and identifiability, and leverage an efficient greedy algorithm with a good approximation ratio and fast speed to select probe paths. We also propose a loss localization method according to loss patterns in a data center network. Our algorithm analysis, experimental evaluation on a Fattree testbed and supplementary large-scale simulation validate the scalability, feasibility and effectiveness of deTector.published_or_final_versio

    Non-Gaussian features from the inverse volume corrections in loop quantum cosmology

    Full text link
    In this paper we study the non-Gaussian features of the primordial fluctuations in loop quantum cosmology with the inverse volume corrections. The detailed analysis is performed in the single field slow-roll inflationary models. However, our results reflect the universal characteristics of bispectrum in loop quantum cosmology. The main corrections to the scalar bispectrum come from two aspects: one is the modifications to the standard Bunch-Davies vacuum, the other is the corrections to the background dependent variables, such as slow-roll parameters. Our calculations show that the loop quantum corrections make fNLf_{{\rm NL}} of the inflationary models increase 0.1%. Moreover, we find that two new shapes arise, namely F1\mathcal F_{1} and F2\mathcal F_{2}. The former gives a unique loop quantum feature which is less correlated with the local, equilateral and single types, while the latter is highly correlated with the local one.Comment: matched to the published version. 30 pages, 4 figure

    Exact Ampitude Ratio and Finite-Size Corrections for the M x N Square Lattice Ising Model The :

    Full text link
    Let f, U and C represent, respectively, the free energy, the internal energy and the specific heat of the critical Ising model on the square M x N lattice with periodic boundary conditions. We find that N f and U are well-defined odd function of 1/N. We also find that ratios of subdominant (N^(-2 i - 1)) finite-size corrections amplitudes for the internal energy and the specific heat are constant. The free energy and the internal energy at the critical point are calculated asymtotically up to N^(-5) order, and the specific heat up to N^(-3) order.Comment: 18 pages, 4 figures, to be published in Phys. Rev. E 65, 1 February 200
    • …
    corecore